Search results

Search for "modified couple stress theory" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Vibration analysis and pull-in instability behavior in a multiwalled piezoelectric nanosensor with fluid flow conveyance

  • Sayyid H. Hashemi Kachapi

Beilstein J. Nanotechnol. 2020, 11, 1072–1081, doi:10.3762/bjnano.11.92

Graphical Abstract
  • couple stress theory [29]. Liu et al. utilized a new finite element method for modeling thin structures with surface effects by using layered shell elements [30]. To the best knowledge of the author, the surface/interface effect on pull-in voltage, viscous fluid velocity effects and dimensionless natural
  • . investigated the effect of nonzero initial conditions, the nonlinear coefficient of squeeze film air damping, and the van der Waals effect on the stability of torsional nanomirrors for the obtained dynamic pull-in instability voltage using the size effect [14]. Fakhrabadi et al. utilized the modified couple
  • stress theory to investigate the effects of various fluid parameters on the pull-in voltage of carbon nanotubes conveying viscous fluid [15]. Also, the vibration analysis of viscoelastic double-walled carbon nanotubes (DWCNTs) combined with ZnO layers and subjected to magnetic and electric fields were
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2020

Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes

  • Moharam Habibnejad Korayem,
  • Ali Asghar Farid and
  • Rouzbeh Nouhi Hefzabad

Beilstein J. Nanotechnol. 2020, 11, 147–166, doi:10.3762/bjnano.11.13

Graphical Abstract
  • optimize accuracy and computational costs, a new nonclassical modeling of the nanomanipulation process based on the modified couple stress theory is proposed that includes the size effects. To this end, after simulating the critical times and forces that are required for the onset of nanoparticle motion on
  • the modified couple stress theory are used to model the dynamics of cylindrical gold nanoparticles while the finite element method is utilized to solve the governing equations of motion. The results show a difference of 90% between the classical and nonclassical models in predicting the maximum
  • distance. Furthermore, by applying an extended von Mises criterion on the modified couple stress theory, it is found that the failure aspect ratio of a cylindrical gold nanoparticle based on nonclassical models is 212% more than that of the classical model. In the end, the results are compared with those
PDF
Album
Full Research Paper
Published 13 Jan 2020

Size-dependent characteristics of electrostatically actuated fluid-conveying carbon nanotubes based on modified couple stress theory

  • Mir Masoud Seyyed Fakhrabadi,
  • Abbas Rastgoo and
  • Mohammad Taghi Ahmadian

Beilstein J. Nanotechnol. 2013, 4, 771–780, doi:10.3762/bjnano.4.88

Graphical Abstract
  • 10.3762/bjnano.4.88 Abstract The paper presents the effects of fluid flow on the static and dynamic properties of carbon nanotubes that convey a viscous fluid. The mathematical model is based on the modified couple stress theory. The effects of various fluid parameters and boundary conditions on the pull
  • ); electrostatic actuation; fluid flow; modified couple stress theory; Introduction Nanotechnology can be defined as the science of manipulating materials on an atomic or molecular scale [1]. Hence, it generally deals with investigating different aspects of the materials in atomic and molecular dimensions, which
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2013
Other Beilstein-Institut Open Science Activities